
BOUT++ code structure

Ben Dudson

York Plasma Institute, Department of Physics,
University of York, Heslington, York YO10 5DD, UK

BOUT++ Workshop

14th September 2015

Ben Dudson, YPI BOUT++ Workshop 2015 (1 of 20)

Getting BOUT++

Ben Dudson, YPI BOUT++ Workshop 2015 (2 of 20)

Use of BOUT++

Contributing:

BOUT++ is under the LGPL license, so code which uses it
can be proprietry. Modifications to the BOUT++ library do
come under the LGPL

You’re free to take and modify BOUT++ for any purpose

We would appreciate it if you contributed back improvements
you make to the code

Support:

We’re happy to help, but our time is limited

One aim of this workshop is to get a group of people
comfortable with using BOUT++ and (eventually) help support
each other

There is a BOUT++ development mailing list. Please let me
know if you’d like to join it

Ben Dudson, YPI BOUT++ Workshop 2015 (3 of 20)

Use of BOUT++

Contributing:

BOUT++ is under the LGPL license, so code which uses it
can be proprietry. Modifications to the BOUT++ library do
come under the LGPL

You’re free to take and modify BOUT++ for any purpose

We would appreciate it if you contributed back improvements
you make to the code

Support:

We’re happy to help, but our time is limited

One aim of this workshop is to get a group of people
comfortable with using BOUT++ and (eventually) help support
each other

There is a BOUT++ development mailing list. Please let me
know if you’d like to join it

Ben Dudson, YPI BOUT++ Workshop 2015 (3 of 20)

Code structure

Separates generic methods from model-specific code

Most of the code doesn’t know or care about what a variable
represents, its normalisation etc. Only needs to know the
geometry and which operation to perform

Ben Dudson, YPI BOUT++ Workshop 2015 (4 of 20)

BOUT++ repository layout

The repository contains the following main directories:
manual/ contains documentation

User manual, introduction to BOUT++, installing and running
Developer manual, describes the internals of BOUT++
Coordinates manual, a collection of useful derivations in the
field-aligned coordinate system used for tokamak simulations

src/ contains BOUT++ library code

examples/ contains test suite and physics models

tools/ contains pre- and post-processing codes

include/ and lib/ contain header files and BOUT++ library

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

BOUT++ repository layout

The repository contains the following main directories:

manual/ contains documentation
src/ contains BOUT++ library code

field/ memory handling and arithmetic used throughout the
codeoperations
fileio/ Binary file input and output
invert/ Inversion routines, particularly Laplacian inversion
mesh/ Handling of mesh topology, metric tensor and MPI
communication
physics/ Miscellaneous routines useful for writing physics
modules, such as gyro-averaging operators
solver/ Time-integration solvers
sys/ Miscellaneous low-level routines

examples/ contains test suite and physics models

tools/ contains pre- and post-processing codes

include/ and lib/ contain header files and BOUT++ library

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

BOUT++ repository layout

The repository contains the following main directories:

manual/ contains documentation

src/ contains BOUT++ library code
examples/ contains test suite and physics models

blob2d/, plasma blob in 2D
hasegawa-wakatani/, drift-wave turbulence in 2D
drift-instability/, resistive drift wave instability
interchange-instability/, resistive interchange mode
shear-alfven-wave/, Shear Alfvén wave
sod-shock/, standard 1D fluid shock problem
orszag-tang/, 2D MHD problem
uedge-benchmark/, 2D benchmark against UEDGE code
elm-pb/, ELM simulation code

tools/ contains pre- and post-processing codes

include/ and lib/ contain header files and BOUT++ library

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

BOUT++ repository layout

The repository contains the following main directories:

manual/ contains documentation

src/ contains BOUT++ library code

examples/ contains test suite and physics models
tools/ contains pre- and post-processing codes

idllib/ Library of routines in IDL
pylib/ Library of routines in Python
matlablib/ Read BOUT++ output into Matlab
mathematicalib/ Read data into Mathematica
slab/ Sheared slab grid generator
tokamak grids/ codes for generating and converting
tokamak equilibria and grid files

include/ and lib/ contain header files and BOUT++ library

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

BOUT++ repository layout

The repository contains the following main directories:

manual/ contains documentation

src/ contains BOUT++ library code

examples/ contains test suite and physics models

tools/ contains pre- and post-processing codes

include/ and lib/ contain header files and BOUT++ library

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

Starting with an example : examples/conduction

This solves heat conduction in 1D (in y):

∂T
∂t

= ∇ · (χ∂||T)

Two variables are needed: T and χ (chi). In the code we define

Field3D T ;
BoutReal ch i ;

BoutReal is just an alias for double

Field3D is a BOUT++ class or type, which handles 3D arrays.
[Defined in include/field3d.hxx, code in
src/field/field3d.cxx]

Ben Dudson, YPI BOUT++ Workshop 2015 (6 of 20)

BOUT++ Fields

The main function of the field classes is to provide automatic
memory management, and looping over array indices.

Before being used, must first be allocated or assigned a value

Field3D a ; / / a has no data
a (1 ,3 ,2) = 1 . 0 ; / / E r ro r !
a . a l l o c a t e () ; / / a has data , undef ined values
a (1 ,3 ,2) = 1 . 0 ; / / ok

Field3D b = 0 . 0 ; / / b has data , a l l zero
b (2 ,3 ,1) = 1 . 0 ; / / ok

This catches use of uninitialised data

Ben Dudson, YPI BOUT++ Workshop 2015 (7 of 20)

BOUT++ Fields

The main function of the field classes is to provide automatic
memory management, and looping over array indices.

Before being used, must first be allocated or assigned a value
This catches use of uninitialised data

Fields have overloaded operators and functions:

Field3D a = 1 . 0 ; / / Def ine a , set to 1.0
Field3D b = 2 . 0 ; / / Def ine b , set to 2.0

Field3D c = a + s q r t (a / b) ;

Should be quite familiar to Fortran users, just remember
indices start from 0 in C/C++.

Ben Dudson, YPI BOUT++ Workshop 2015 (8 of 20)

Physics model parts

Every physics model has two parts:
1 An initialisation function which is called (run) once at the start

of a simulation
2 A run function which is usually called every time step

In the examples/conduction code, these appear as two C-style
functions

i n t p h y s i c s i n i t (bool r e s t a r t i n g) {

r e t u r n 0 ;
}

i n t phys ics run (BoutReal t) {

r e t u r n 0 ;
}

Ben Dudson, YPI BOUT++ Workshop 2015 (9 of 20)

Physics model parts

Every physics model has two parts:
1 An initialisation function which is called (run) once at the start

of a simulation
2 A run function which is usually called every time step

For those who prefer a more C++ style interface,
examples/conduction-newapi:

c lass Conduction : p u b l i c PhysicsModel {
pro tec ted :

i n t i n i t (bool r e s t a r t i n g) {
r e t u r n 0 ;

}

i n t rhs (BoutReal t) {
r e t u r n 0 ;

}

} ;
Ben Dudson, YPI BOUT++ Workshop 2015 (10 of 20)

Reading options

We need a way to set the parameter χ. The Options class is a
way to get input options. For example:

Options ∗ opt ions = Options : : getRoot () ;
op t ions = opt ions−>getSect ion (” conduct ion ”) ;
opt ions−>get (” ch i ” , chi , 1 . 0) ; / / Read the op t ion

If no value is set then the default (here 1.0) is used)

Root

conduction

chi

Code in include/options.hxx and src/sys/options.cxx

Ben Dudson, YPI BOUT++ Workshop 2015 (11 of 20)

Setting options

To set this option we could either:
1 Put it in the input settings file BOUT.inp

[conduct ion]
ch i = 2.5 # Heat conduct ion c o e f f i c i e n t

2 Or override this on the command line

$. / conduct ion conduct ion : ch i =3.2

(note no space around ’:’ or ’=’)

The value of chi used is printed to the log files BOUT.log.*

Ben Dudson, YPI BOUT++ Workshop 2015 (12 of 20)

Evolving variables

To tell BOUT++ to evolve T in time, in the init function we call

SOLVE FOR(T) ;

1 If starting a new simulation, T is set to initial value from
options

2 At every time step solver will set T , then run the user code
(physics run)

3 The user code must calculate the time-derivatives, and return
to the solver

Time integration scheme T

RK4, BDF, IMEX, ...
User function

∂T
∂t

Time and space are discretised separately: Method of Lines (MOL)

Ben Dudson, YPI BOUT++ Workshop 2015 (13 of 20)

Calculating time derivatives

In the physics run function, the evolving fields are given values,
and the simulation time is an input parameter (t).

Communications are not done automatically, so before
taking derivatives of a field that field should be communicated

mesh−>communicate (T) ; / / Communicate guard c e l l s

The time derivative of a Field3D is another Field3D which
can be accessed using ddt() (meaning ∂/∂t , not d/dt)

In this case we want an operator ∇ · (K∂||f). Fortunately there
is a function Div par K Grad par which does this:

ddt (T) = Div par K Grad par (chi , T) ;

Ben Dudson, YPI BOUT++ Workshop 2015 (14 of 20)

Derivative operators

The operators are usually found in include/difops.hxx and
src/mesh/difops.cxx

Line 502:

const Field3D Div par K Grad par (BoutReal kY , Field3D &f) {
r e t u r n kY∗Grad2 par2 (f) ;

}

This is a function which takes two inputs: a heat conduction
coefficient which doesn’t depend on space, and a Field3D which
depends on mesh location. It returns a Field3D containing the
second derivative of the input.

⇒ Spatial operators are just functions which evaluate a finite
difference formula and return a field.

Ben Dudson, YPI BOUT++ Workshop 2015 (15 of 20)

Selecting the time integrator

Many time integration schemes can be used, set by option

[so l ve r]
type = rk4

(command-line solver:type=rk4)

A number of components can be changed like this at run-time

Code does not depend on what type of solver is used

Done by defining an interface and using a factory pattern

Ben Dudson, YPI BOUT++ Workshop 2015 (16 of 20)

Factory pattern: consistent interfaces

First define an interface which all solvers should have:
include/bout/solver.hxx).

c lass Solver {
p u b l i c :

v i r t u a l i n t i n i t (bool r e s t a r t i n g , i n t nout , BoutReal t s t ep) ;
v i r t u a l i n t run () = 0 ; / / Must be implemented

} ;

Each implementation has this same interface:
src/solver/impls/rk4/rk4.hxx

c lass RK4Solver : p u b l i c Solver { / / I s a type of Solver
p u b l i c :

i n t i n i t (bool r e s t a r t i n g , i n t nout , BoutReal t s t ep) ;
i n t run () ;

} ;

Ben Dudson, YPI BOUT++ Workshop 2015 (17 of 20)

Factory pattern: creating

When you need to create a solver

so l ve r = Solver : : c reate () ;

(include/boutmain.hxx line 111). This calls
src/solver/solver.cxx line 861, which calls
src/solver/solverfactory.cxx.

The solver factory:
Includes all the header files for each implementation

1 Reads the “type” option (line 59)
2 Then chooses which solver to create (line 70...) and returns it

Returns the same thing (a Solver*) regardless of
implementation

This means that the code which called Solver::create()
has no way of knowing which solver it got (*)

Ben Dudson, YPI BOUT++ Workshop 2015 (18 of 20)

Factory pattern: benefits and issues

This may seem to be a problem, but is actually a Good Thing

The rest of the code must be independent of solver type, and
solvers can be added easily
There can be a temptation to “reach inside” a solver and
access implementation-specific data or functions.

This must be resisted! It leads to messy, fragile code, more
work, and lasting regret...
Instead the interface should be carefully considered: What is it
a solver should do?

Designing good interfaces is very hard; the BOUT++ ones
have changed over time

Ben Dudson, YPI BOUT++ Workshop 2015 (19 of 20)

Summary

BOUT++ is a collection of useful classes and functions which
work together

Data on grid points is manipulated using arrays wrapped up in
Field3D and objects (and siblings).

Many components have a fixed interface, and implementation
can be changed at run-time using the factory pattern

Having good interfaces is important

Major changes to some parts of the code coming this year
(reorganisation of Mesh)

Ben Dudson, YPI BOUT++ Workshop 2015 (20 of 20)

