BOUT++ code structure

Ben Dudson

York Plasma Institute, Department of Physics,
University of York, Heslington, York YO10 5DD, UK

BOUT++ Workshop

14" September 2015

Ben Dudson, YPI BOUT++ Workshop 2015 (1 of 20)

Getting BOUT++

Ben Dudson, YPI BOUT++ Workshop 2015 (2 of 20)

Use of BOUT ++

Contributing:

@ BOUT++ is under the LGPL license, so code which uses it
can be proprietry. Modifications to the BOUT++ library do
come under the LGPL

@ You're free to take and modify BOUT++ for any purpose

@ We would appreciate it if you contributed back improvements
you make to the code

Ben Dudson, YPI BOUT++ Workshop 2015 (3 of 20)

Use of BOUT ++

Contributing:

@ BOUT++ is under the LGPL license, so code which uses it
can be proprietry. Modifications to the BOUT++ library do
come under the LGPL

@ You're free to take and modify BOUT++ for any purpose

@ We would appreciate it if you contributed back improvements
you make to the code

Support:
@ We're happy to help, but our time is limited

@ One aim of this workshop is to get a group of people
comfortable with using BOUT++ and (eventually) help support
each other

@ There is a BOUT++ development mailing list. Please let me
know if you'd like to join it

Ben Dudson, YPI BOUT++ Workshop 2015 (3 of 20)

Code structure

@ Separates generic methods from model-specific code

@ Most of the code doesn’t know or care about what a variable
represents, its normalisation etc. Only needs to know the
geometry and which operation to perform

Physics model BOUT++ library
Evolving - Time
variables integration Mesh
- - comms
methods
Modal Input /
ode Output
equations Boundary p
value solvers
~100 - 1000 lines
~30,000 lines

Ben Dudson, YPI BOUT++ Workshop 2015 (4 of 20)

BOUT++ repository layout

The repository contains the following main directories:
@ manual/ contains documentation
e User manual, introduction to BOUT++, installing and running
o Developer manual, describes the internals of BOUT++
e Coordinates manual, a collection of useful derivations in the
field-aligned coordinate system used for tokamak simulations

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

BOUT++ repository layout

The repository contains the following main directories:
@ manual/ contains documentation
@ src/ contains BOUT++ library code

field/ memory handling and arithmetic used throughout the
codeoperations

fileio/ Binary file input and output

invert/ Inversion routines, particularly Laplacian inversion
mesh/ Handling of mesh topology, metric tensor and MPI
communication

physics/ Miscellaneous routines useful for writing physics
modules, such as gyro-averaging operators

solver/ Time-integration solvers

sys/ Miscellaneous low-level routines

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

BOUT++ repository layout

The repository contains the following main directories:

@ manual/ contains documentation

@ src/ contains BOUT++ library code
@ examples/ contains test suite and physics models

blob2d/, plasma blob in 2D

hasegawa-wakatani/, drift-wave turbulence in 2D
drift-instability/, resistive drift wave instability
interchange-instability/, resistive interchange mode
shear-alfven-wave/, Shear Alfvén wave

sod-shock/, standard 1D fluid shock problem
orszag-tang/, 2D MHD problem

uedge-benchmark/, 2D benchmark against UEDGE code
elm-pb/, ELM simulation code

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

BOUT++ repository layout

The repository contains the following main directories:
@ manual/ contains documentation
@ src/ contains BOUT++ library code
@ examples/ contains test suite and physics models

@ tools/ contains pre- and post-processing codes

e idllib/ Library of routines in IDL
pylib/ Library of routines in Python
matlablib/ Read BOUT++ output into Matlab
mathematicalib/ Read data into Mathematica
slab/ Sheared slab grid generator
tokamak _grids/ codes for generating and converting
tokamak equilibria and grid files

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

BOUT++ repository layout

The repository contains the following main directories:
@ manual/ contains documentation
@ src/ contains BOUT++ library code
@ examples/ contains test suite and physics models
@ tools/ contains pre- and post-processing codes
@ include/ and 1ib/ contain header files and BOUT++ library

Ben Dudson, YPI BOUT++ Workshop 2015 (5 of 20)

Starting with an example : examples/conduction

This solves heat conduction in 1D (in y):

oT
V(T
p (xo)T)

Two variables are needed: T and y (chi). In the code we define

Field3D T;
BoutReal chi;

@ BoutReal is just an alias for double

@ Field3D is a BOUT++ class or type, which handles 3D arrays.
[Defined in include/field3d.hxx, code in
src/field/field3d.cxx]

Ben Dudson, YPI BOUT++ Workshop 2015 (6 of 20)

BOUT++ Fields

@ The main function of the field classes is to provide automatic
memory management, and looping over array indices.

@ Before being used, must first be allocated or assigned a value

Field3D a; // a has no data

a(1,3,2) = 1.0; // Error!

a.allocate (); // a has data, undefined values
a(1,3,2) = 1.0; // ok

Field3D b = 0.0; // b has data, all zero
b(2,3,1) = 1.0; // ok

This catches use of uninitialised data

Ben Dudson, YPI BOUT++ Workshop 2015 (7 of 20)

BOUT++ Fields

@ The main function of the field classes is to provide automatic
memory management, and looping over array indices.

@ Before being used, must first be allocated or assigned a value
This catches use of uninitialised data

@ Fields have overloaded operators and functions:

Field3D a 1.0; // Define a, set to 1.0
Field3D b 2.0; // Define b, set to 2.0

Field3D ¢ = a + sqrt(a/b);

Should be quite familiar to Fortran users, just remember
indices start from 0 in C/C++.

Ben Dudson, YPI BOUT++ Workshop 2015 (8 of 20)

Physics model parts

Every physics model has two parts:

@ Aninitialisation function which is called (run) once at the start
of a simulation

© A run function which is usually called every time step

In the examples/conduction code, these appear as two C-style
functions

int physics_init(bool restarting) {

return O;

}
int physics_run(BoutReal t) {

return O;

Ben Dudson, YPI BOUT++ Workshop 2015 (9 of 20)

Physics model parts

Every physics model has two parts:
@ Aninitialisation function which is called (run) once at the start
of a simulation
© A run function which is usually called every time step
For those who prefer a more C++ style interface,
examples/conduction-newapi:

class Conduction : public PhysicsModel {
protected:

int init(bool restarting) ({
return 0;

}

int rhs(BoutReal t) {
return O;

Ben Dudson, YPI BOUT++ Workshop 2015 (10 of 20)

Reading options
We need a way to set the parameter y. The Options class is a

way to get input options. For example:

Options =options = Options ::getRoot();
options = options—>getSection (”conduction”);
options—>get(”chi”, chi, 1.0); // Read the option

If no value is set then the default (here 1.0) is used)

Root
. \

conduction

Code in include/options.hxx and src/sys/options.cxx

Ben Dudson, YPI BOUT++ Workshop 2015 (11 of 20)

Setting options

To set this option we could either:
@ Put it in the input settings file BOUT. inp

[conduction]
chi = 2.5 # Heat conduction coefficient

@ Or override this on the command line
$./conduction conduction:chi=3.2

(note no space around ’;’ or '=’")
The value of chi used is printed to the log files BOUT. log. *

Ben Dudson, YPI BOUT++ Workshop 2015 (12 of 20)

Evolving variables

To tell BOUT++ to evolve T in time, in the init function we call
SOLVE_FOR(T);

@ I[f starting a new simulation, T is set to initial value from
options

© At every time step solver will set T, then run the user code
(physics_run)

© The user code must calculate the time-derivatives, and return
to the solver

Time integration scheme User function
RK4, BDF, IMEX, ...

or
ot

Time and space are discretised separately: Method of Lines (MOL)

Ben Dudson, YPI BOUT++ Workshop 2015 (13 of 20)

Calculating time derivatives

In the physics_run function, the evolving fields are given values,
and the simulation time is an input parameter (t).

@ Communications are not done automatically, so before
taking derivatives of a field that field should be communicated

mesh—>communicate (T); // Communicate guard cells
@ The time derivative of a Field3D is another Field3D which
can be accessed using ddt () (meaning d/dt, not d/dt)

@ In this case we want an operator V - (Kdf). Fortunately there
is a function Div_par_K_Grad_par which does this:

ddt(T) = Div_par_K_Grad_par(chi, T);

Ben Dudson, YPI BOUT++ Workshop 2015 (14 of 20)

Derivative operators

The operators are usually found in include/difops.hxx and
src/mesh/difops.cxx
Line 502:

const Field3D Div_par_K_Grad_par(BoutReal kY, Field3D
return kY=Grad2_par2(f);

}

This is a function which takes two inputs: a heat conduction
coefficient which doesn’t depend on space, and a Field3D which
depends on mesh location. It returns a Field3D containing the
second derivative of the input.

= Spatial operators are just functions which evaluate a finite
difference formula and return a field.

Ben Dudson, YPI BOUT++ Workshop 2015 (15 of 20)

Selecting the time integrator

@ Many time integration schemes can be used, set by option

[solver]
type = rk4

(command-line solver: type=rk4)
@ A number of components can be changed like this at run-time
@ Code does not depend on what type of solver is used

@ Done by defining an interface and using a factory pattern

Ben Dudson, YPI BOUT++ Workshop 2015 (16 of 20)

Factory pattern: consistent interfaces

@ First define an interface which all solvers should have:
include/bout/solver.hxx).

class Solver {

public:

virtual int init(bool restarting, int nout, Bout
virtual int run() = 0; // Must be implemented

'

@ Each implementation has this same interface:
src/solver/impls/rk4/rk4.hxx

class RK4Solver : public Solver { // Is a type of
public:
int init(bool restarting, int nout, BoutReal tste
int run();

'

Ben Dudson, YPI BOUT++ Workshop 2015 (17 of 20)

Factory pattern: creating

When you need to create a solver
solver = Solver::create ();

(include/boutmain.hxx line 111). This calls
src/solver/solver.cxx line 861, which calls
src/solver/solverfactory.cxx.

@ The solver factory:
@ Includes all the header files for each implementation
@ Reads the “type” option (line 59)
@ Then chooses which solver to create (line 70...) and returns it
@ Returns the same thing (a Solver¥) regardless of
implementation

@ This means that the code which called Solver: :create()
has no way of knowing which solver it got (*)

Ben Dudson, YPI BOUT++ Workshop 2015 (18 of 20)

Factory pattern: benefits and issues

@ This may seem to be a problem, but is actually a Good Thing

@ The rest of the code must be independent of solver type, and
solvers can be added easily
@ There can be a temptation to “reach inside” a solver and
access implementation-specific data or functions.
e This must be resisted! It leads to messy, fragile code, more
work, and lasting regret...
o Instead the interface should be carefully considered: What is it
a solver should do?

@ Designing good interfaces is very hard; the BOUT++ ones
have changed over time

Ben Dudson, YPI BOUT++ Workshop 2015 (19 of 20)

@ BOUT++ is a collection of useful classes and functions which
work together

@ Data on grid points is manipulated using arrays wrapped up in
Field3D and objects (and siblings).

@ Many components have a fixed interface, and implementation
can be changed at run-time using the factory pattern

@ Having good interfaces is important

@ Major changes to some parts of the code coming this year
(reorganisation of Mesh)

Ben Dudson, YPI BOUT++ Workshop 2015 (20 of 20)

