
Time Integration in
BOUT++

Nick Walkden on behalf of Ben
Dudson and the BOUT++ Team

1

Contents

• Numerical Time Integration
• Time solvers in BOUT++
• Optimization: Physics based preconditioning
• Summary

2

Numerical Time Integration
• A general evolution equation of the form

 can be solved numerically by discretizing the time domain
• This can be done equivalently by

 or by combining the two using

3

Explicit methodsExplicit methods Implicit methodsImplicit methods

ImEx methodsImEx methods

Numerical Time Integration
Explicit Methods

4

Good for:
• Single timescales
• Non-linear problems

Bad for:
• Stiff problems

Advantages:
• Easy to implement
• Relatively little cost

per timestep

Disadvantages:
• Stability (ie CFL

condition)

Numerical Time Integration
Implicit Methods

5

Good for:
• Stiff

problems/multiple
timescales

Bad for:
• Heavily non-linear

problems

Advantages:
• Unconditionally

stable
• Large timesteps

Disadvantages:
• Complexity
• Cost per timestep
• Under-relaxation

Numerical Time Integration
ImEx Methods

6

Good for:
• Stiff

problems/multiple
timescales

Bad for:

Advantages:
• Timestep only

limited by slow
scales

Disadvantages:
• Complexity
• Cost per timestep
• Dependant on

physics model

Numerical Time Integration
• Implicit Methods are often cast as a Newton iteration

7

can be Taylor expanded to give

where

Numerical Time Integration
• Implicit Methods are often cast as a Newton iteration

8

So we can now solve the problem

which we use to update

iteratively until

Time Solvers in BOUT++
• To advance in time, time derivatives of evolving quantities

are required
– All fields store the derivatives in another field called deriv

which can be accessed through var.timeDeriv()

Field3D var;
Field3D *deriv = var.timeDeriv()

– When we call ddt(var) we are actually calling the inline
function (include/field3d.hxx line 346)

inline Field3D& ddt(Field3D &f){

return *(f.timeDeriv()); }

9

Time Solvers in BOUT++
• To advance in time, time derivatives of evolving quantities

are required
– All fields store the derivatives in another field called deriv

which can be accessed through var.timeDeriv()

Field3D var;
Field3D *deriv = var.timeDeriv()

– When we call ddt(var) we are actually calling the inline
function (include/field3d.hxx line 346)

inline Field3D& ddt(Field3D &f){

return *(f.timeDeriv()); }

10

This allows us to treat ddt(var) as a variable in our code so
that we can write statements like

ddt(var) = … + …

This allows us to treat ddt(var) as a variable in our code so
that we can write statements like

ddt(var) = … + …

src/solver/

Time Solvers in BOUT++
• In BOUT++ the solver has a factory format

11

solver.cxxsolver.cxx solverfactory.cxxsolverfactory.cxx solverfactory.hxxsolverfactory.hxx

src/solver/impls/

emptysolver.hxxemptysolver.hxx

euler cvode etc

euler.cxxeuler.cxx

euler.hxxeuler.hxx

cvode.cxxcvode.cxx

cvode.hxxcvode.hxx

etc.cxxetc.cxx

etc.hxxetc.hxx

src/solver/

Time Solvers in BOUT++
• In BOUT++ the solver has a factory format

12

solver.cxxsolver.cxx solverfactory.cxxsolverfactory.cxx solverfactory.hxxsolverfactory.hxx

src/solver/impls/

emptysolver.hxxemptysolver.hxx

euler cvode etc

euler.cxxeuler.cxx

euler.hxxeuler.hxx

cvode.cxxcvode.cxx

cvode.hxxcvode.hxx

etc.cxxetc.cxx

etc.hxxetc.hxx

The solver base class contains a set of base routines
such as loading and saving variables

It also contains a set of virtual functions which must be
contained in the individual solver implementations

The solver base class contains a set of base routines
such as loading and saving variables

It also contains a set of virtual functions which must be
contained in the individual solver implementations

src/solver/

Time Solvers in BOUT++
• In BOUT++ the solver has a factory format

13

solver.cxxsolver.cxx solverfactory.cxxsolverfactory.cxx solverfactory.hxxsolverfactory.hxx

src/solver/impls/

emptysolver.hxxemptysolver.hxx

euler cvode etc

euler.cxxeuler.cxx

euler.hxxeuler.hxx

cvode.cxxcvode.cxx

cvode.hxxcvode.hxx

etc.cxxetc.cxx

etc.hxxetc.hxx

The solver factory is the only bit that knows about the
implementations so the rest of the code is forced to be
independent of the solver choice

It builds a solver out of whichever implementation has
been chosen by the user allowing the user to change
solver at runtime (ie without a recompilation)

The solver factory is the only bit that knows about the
implementations so the rest of the code is forced to be
independent of the solver choice

It builds a solver out of whichever implementation has
been chosen by the user allowing the user to change
solver at runtime (ie without a recompilation)

src/solver/

Time Solvers in BOUT++
• In BOUT++ the solver has a factory format

14

solver.cxxsolver.cxx solverfactory.cxxsolverfactory.cxx solverfactory.hxxsolverfactory.hxx

src/solver/impls/

emptysolver.hxxemptysolver.hxx

euler cvode etc

euler.cxxeuler.cxx

euler.hxxeuler.hxx

cvode.cxxcvode.cxx

cvode.hxxcvode.hxx

etc.cxxetc.cxx

etc.hxxetc.hxx

Different time-stepping techniques are included as
separate implementations of the base solver class

Adding a new time integration method should require
minimal changes to the rest of the code

Different time-stepping techniques are included as
separate implementations of the base solver class

Adding a new time integration method should require
minimal changes to the rest of the code

Time Solvers in BOUT++

15

• BOUT++ has a range of solver implementations:

Explicit Solvers Implicit Solvers ImEx Solvers

euler pvode arkode

rk4 cvode BDF multistep

rk3-ssp petsc (various)

karniadakis ida

power

The default behaviour is to use either CVODE or IDA if
present, otherwise use PVODE

Time Solvers in BOUT++

16

• BOUT++ has a range of solver implementations:

Explicit Solvers Implicit Solvers ImEx Solvers

euler pvode arkode

rk4 cvode BDF multistep

rk3-ssp petsc (various)

karniadakis ida

power

The default behaviour is to use either CVODE or IDA if
present, otherwise use PVODE

Require
external
libraries

Time Solvers in BOUT++

17

• BOUT++ has a range of solver implementations:
• The solver type is set in the BOUT.inp file or on the

command line

• Usually best to try a few (ie RK4 and pvode) to find the
optimal choice for your case

In BOUT.inp:

[solver]
type = …

On the command line

./executable
solver:type=…

Time Solvers in BOUT++

18

• Some additional useful options are:
Option Function

mxstep = 500 Number of timesteps to try before timestep is a
failure

atol = 1e-10 Absolute tolerance used to determine error norm.
Determines noise level of solution

rtol = 1e-5 Relative tolerances used to determine error norm.
Indicates no of digits of relative accuracy for a
single time step

adaptive = false Use adaptive timestepping in rk4

use_precon =
true

Use preconditioning in cvode and petsc

Time Solvers in BOUT++

19

• To tell the time-solver to solve for a particular field we use
the routine

 or the macro

 or similarly for 2 <= n <= 6

• This calls a routine in the solver class

 which adds the variable to the state and residual vectors for

 input to the time-solver

bout_solve(n, ”density”);

SOLVE_FOR(n);

SOLVE_FORn(n,…);

solver->add(n,”density”);

Time Solvers in BOUT++

20

• BOUT++ data is then be passed to the solver through a few
protected functions

Solver

global index

Solver

global index
BOUT++

x,y,z indices

BOUT++

x,y,z indices

save_vars(BoutReal *udata);

load_vars(BoutReal *udata);

save_derivs(BoutReal *udata);

load_derivs(BoutReal *udata);

f(t) f(t)

F(f,t) F(f,t)

Time Solvers in BOUT++

21

• There are two mandatory functions that a time-solver
implementation must contain

int mysolver::init(bool restarting, int nout, BoutReal
tstep)

Initialization of the solver. Calls a generic solver
initialization as well as implementation specific solver
options.

int mysolver::init(bool restarting, int nout, BoutReal
tstep)

Initialization of the solver. Calls a generic solver
initialization as well as implementation specific solver
options.

Time Solvers in BOUT++

22

• There are two mandatory functions that a time-solver
implementation must contain

int mysolver::init(bool restarting, int nout, BoutReal
tstep)

int mysolver::run()

Running the solver. This function integrates in time until
nout is reached and the simulation is over.

int mysolver::init(bool restarting, int nout, BoutReal
tstep)

int mysolver::run()

Running the solver. This function integrates in time until
nout is reached and the simulation is over.

Time Solvers in BOUT++

23

• There are two mandatory functions that a time-solver
implementation must contain

• A call to int bout_run(Solver *solver, rhsfunc
physics_run) (bout++.cxx, L 287) is made in the main
function which runs the solver

• That’s how the magic happens…

Time Solvers in BOUT++
● For many problems the implicit PVODE/CVODE solvers work well
● In some cases however they can fail

XPPM
(nonlinear limiter)

Fromm (2nd order)Central differencing
with dissipation

Example: Advection of a pulse in 1D
∂ f
∂ t

=−v
∂ f
∂ x

PVODE integrator, absolute tolerance 1e-12, relative tolerance 1e-5

CFL condition limits explicit methods to 128 steps, or 512 evaluations for RK4
The RK3-SSP method requires dt < 0.2 dt(CFL), or 1920 evaluations

PVODE: 2904 evals PVODE: 3073 evals PVODE: 75,585 evals

Time Solvers in BOUT++

25

• For ImEx schemes the split operators must be defined

examples/test-drift/

class DriftWave : public
PhysicsModel {

int init(bool restart) {
SetSplitOperator();
...

}
int convective(BoutReal time) {

// Explicit part
}
int diffusive(BoutReal time) {

// Implicit part
}

}

examples/split-operator/

int physics_init(bool restart) {
Solver->setSplitOperator

(physics_run, reaction);
...

}

int physics_run(BoutReal time) {
// Explicit part

}

int reaction(BoutReal time) {
 // Implicit part
}

C style interface C++ style interface

Optimization

26

"We should forget about small efficiencies, say
about 97% of the time: premature optimization is
the root of all evil. Yet we should not pass up our

opportunities in that critical 3%.” D. Knuth

"We should forget about small efficiencies, say
about 97% of the time: premature optimization is
the root of all evil. Yet we should not pass up our

opportunities in that critical 3%.” D. Knuth

• Optimization in BOUT++ is handled almost entirely
internally and should rarely be tinkered with

• One exception to this is preconditioning

Optimization

27

•

Optimization

28

• We can use our knowledge of the physics system to
help us here

• If we have some stiff physics on some timescale
then we can try and construct P such that

 over

• This then means that over the time-scale the
inversion is trivial

Optimization

29

• Problem: How do we find P ?
1. Reduce equations

2. Calculate analytical Jacobian matrix

3. Factorize matrix using schur factorization

4. Simplify the problem (decouple perpendicular and parallel
dynamics)

Optimization

30

1. Reduce equations

 Slow (non-stiff)
physics

Fast (stiff) physics

We want to isolate the fast physics, so consider the reduced
system

Optimization

31

2. Calculate the Jacobian

For our reduced system

So

Optimization

32

3. Factorize the matrix

Using a technique called Schur factorization

Where the Schur complement is

Optimization

33

• Problem: How do we find P ?
1. Reduce equations

2. Calculate analytical Jacobian matrix

3. Factorize matrix using schur factorization

4. Simplify the problem (decouple perpendicular and parallel
dynamics)

We now have the preconditioner operator P

 where

Optimization

34

• Problem: How do we apply the preconditioner?
5. Create precon function

6. Implement preconditioning operator on time derivatives

7. Tell the solver to use a preconditioner

8. Tinker with the preconditioner until you get some speedup

Optimization

35

5. Write a precon function

This function must apply the preconditioning operator to the time
derivatives of the evolving variables

t is the current simulation time, gamma is the methods timestep and
delta may be used to apply constraints (but rarely used, so don’t
worry about it)

At the end of your physics module you now need a function called

int precon(BoutReal t, BoutReal gamma, BoutReal delta)

Optimization

36

6. Apply preconditioner to time derivatives

To apply the preconditioner we will need to invert a matrix in the
parallel direction. BOUT++ has a class to do this, called
InvertPar which solves

InvertPar *precon_inv;
int physics_init(bool restarting){
…
precon_inv = InvertPar::create();
precon_inv->setCoefA(1.0);
…
}

InvertPar *precon_inv;
int physics_init(bool restarting){
…
precon_inv = InvertPar::create();
precon_inv->setCoefA(1.0);
…
}

Optimization

37

6. Apply preconditioner to time derivatives

Now in the precon function we apply the operator

int precon(BoutReal t, BoutReal gamma, BoutReal
delta){

mesh->communicate(ddt(T));
Field 2D B;
B = -gamma*chi*(T.DC())^(5./2.);
precon_inv->setCoefB(B);
ddt(T) = precon_inv->solve(ddt(T));
ddt(T).applyBoundary(“neumann_o2”);

}

int precon(BoutReal t, BoutReal gamma, BoutReal
delta){

mesh->communicate(ddt(T));
Field 2D B;
B = -gamma*chi*(T.DC())^(5./2.);
precon_inv->setCoefB(B);
ddt(T) = precon_inv->solve(ddt(T));
ddt(T).applyBoundary(“neumann_o2”);

}

Optimization

38

7. Tell the solver to use the preconditioner

In BOUT.inp we need the lines:

[solver]
type = cvode #or petsc
use_precon = true
rightprec = false

In physics_init we need the line:

solver->setPrecon(precon);

Optimization

39

7. Tell the solver to use the preconditioner

In a 1D high powered SOL slab equilibrium calculation on 8 cores

Solver Setup Wall time (s) ~Iteration count

CVODE Isothermal 2 100

CVODE Conduction removed 5 300

PVODE None 221 37000

CVODE None 276 45000

CVODE BBD Preconditioner 58 17000

CVODE Custom Preconditioner 9 800

Approximately 30x speedup with preconditioner

Optimization

40

8. Tinker

Since the preconditioner affects convergence, but not the solution,
you can tinker with it to find the best setup

WARNING: Because the preconditioner is problem dependant it
will not always be beneficial

Summary

41

• BOUT++ contains a suite of time-solvers including
explicit and implicit options

• The choice of solver is problem dependant but can
be interchanged at runtime

• Physics based preconditioning can be used to
optimize (implicit) solvers, but costs (some) blood

	Slide 1
	Contents
	Numerical Time Integration
	Numerical Time Integration
	Numerical Time Integration
	Numerical Time Integration
	Numerical Time Integration
	Numerical Time Integration
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Time Solvers in BOUT++
	Slide 24
	Time Solvers in BOUT++
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Optimization
	Summary

