
Verification using the Method of Manufactured
Solutions

Ben Dudson (UoY),
Jens Madsen (DTU), John Omotani (CCFE)

York Plasma Institute, Department of Physics,
University of York, Heslington, York YO10 5DD, UK

BOUT++ Workshop

16th September 2014

Ben Dudson (YPI) BOUT++ Workshop 2014 (1 of 14)

Outline

Verification and MMS

Verification of BOUT++

Implementation

Example

Ben Dudson (YPI) BOUT++ Workshop 2014 (2 of 14)

Verification

Verification: Checks that a chosen set of partial differential
equations is solved correctly and consistently

As the spatial and temporal mesh is refined the solution
converges to a solution of the continuum equations
Order of convergence should be the accuracy expected of the
numerical scheme used

Validation: Checks that the correct set of equations has been
chosen

Usually involves comparison against experiment

Ben Dudson (YPI) BOUT++ Workshop 2014 (3 of 14)

Verification methods

Inspection of the output for “reasonable” features

Comparison against analytic solutions

Convergence to an analytic solution

Code cross-comparisons

Convergence to a manufactured solution

Ben Dudson (YPI) BOUT++ Workshop 2014 (4 of 14)

Manufactured solutions

How do you test convergence to an exact solution, when no
analytical solution can be found for your equations?
→ Change your equations!

If you are solving a set of equations to solve, for quantities f :

∂f
∂t

= F (f)

Add a source term S:
∂f
∂t

= F (f) + S (t)

Now choose a (manufactured) solution fM and calculate S

S =
∂fM

∂t
− F

(
fM

)
S can be calculated analytically, and evaluated to machine
precision
When the modified equations are solved numerically, any error
must come from the discretisation of F or time integration.

Ben Dudson (YPI) BOUT++ Workshop 2014 (5 of 14)

Manufactured solutions: Example

By inserting a known source into the equations, a solution can be
chosen for an arbitrarily complex set of equations 1

e.g. Viscid Burger’s equation:

∂u
∂t

= −u
∂u
∂x

+ ν
∂2u
∂x2︸ ︷︷ ︸

F

+S︸︷︷︸
Added source

Choose a solution for u
u = sin (x − t)

Insert it into the equation to calculate the source S

S = − cos (x − t)︸ ︷︷ ︸
∂u/∂t

+ sin (x − t) cos (x − t)︸ ︷︷ ︸
u·∂u/∂x

+ ν · sin (x − t)︸ ︷︷ ︸
−ν∂2u/∂x2

1With some restrictions
Ben Dudson (YPI) BOUT++ Workshop 2014 (6 of 14)

Manufactured solutions: Example

The simulation code is now modified slightly, adding a
time-dependent source to the equations

Start at t = 0 with the manufactured solution

Run the simulation for a short time ∆t

The difference between the exact and numerical solution
ε = f (∆t) − fM (∆t) at t = ∆t is due to numerical error

This error should decrease towards machine precision as the
resolution (time and spatial) of the simulation is increased (i.e.
converge).

The rate of convergence at high resolution (“asymptotic”
regime) should agree with the expected rate e.g. ε ∝ δx2 for
second-order central differencing.

Ben Dudson (YPI) BOUT++ Workshop 2014 (7 of 14)

Verification of BOUT++

BOUT++ has been recently tested using this method2

Time integration schemes

Advection schemes

Boundary conditions
(particular thanks to Jens,
John, and Luke)

Toroidal coordinates, and
shifted metric procedure

3-field (p,U,Ψ) reduced
MHD for ELM simulations

5-field (n,Te , ω, v||e , v||i)
equations for turbulence
simulations

10-3 10-2 10-1 100

Time step δt

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

l2
 e

rr
o
r

n
o
rm

Euler
Karniadakis
RK3-SSP
RK4

2Enabling Research project CfP-WP14-ER-01/Swiss Confederation-01
Ben Dudson (YPI) BOUT++ Workshop 2014 (8 of 14)

Verification of BOUT++

BOUT++ has been recently tested using this method2

Time integration schemes

Advection schemes

Boundary conditions
(particular thanks to Jens,
John, and Luke)

Toroidal coordinates, and
shifted metric procedure

3-field (p,U,Ψ) reduced
MHD for ELM simulations

5-field (n,Te , ω, v||e , v||i)
equations for turbulence
simulations

10-3 10-2 10-1 100

Mesh spacing δx

10-4

10-3

10-2

10-1

100

l2
 e

rr
o
r

n
o
rm

Arakawa
1st order upwind
2nd order central
3rd order WENO

Note: Limited to second order
accurate by boundary conditions
and calculation of velocity field

2Enabling Research project CfP-WP14-ER-01/Swiss Confederation-01
Ben Dudson (YPI) BOUT++ Workshop 2014 (8 of 14)

Verification of BOUT++

BOUT++ has been recently tested using this method2

Time integration schemes

Advection schemes

Boundary conditions
(particular thanks to Jens,
John, and Luke)

Toroidal coordinates, and
shifted metric procedure

3-field (p,U,Ψ) reduced
MHD for ELM simulations

5-field (n,Te , ω, v||e , v||i)
equations for turbulence
simulations

Boundary conditions require ad-
ditional modifications for MMS
testing

e.g Neumann boundary condi-
tions

∂f
∂x

= 0

must be modified since in general

∂fM

∂x
= N (t) , 0

Boundaries now located half-way
between cells

2Enabling Research project CfP-WP14-ER-01/Swiss Confederation-01
Ben Dudson (YPI) BOUT++ Workshop 2014 (8 of 14)

Verification of BOUT++

BOUT++ has been recently tested using this method2

Time integration schemes

Advection schemes

Boundary conditions
(particular thanks to Jens,
John, and Luke)

Toroidal coordinates, and
shifted metric procedure

3-field (p,U,Ψ) reduced
MHD for ELM simulations

5-field (n,Te , ω, v||e , v||i)
equations for turbulence
simulations

10-3 10-2 10-1 100

Mesh spacing δx

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
rr

o
r

n
o
rm

[φ,f]

∇2

∇2
||

2Enabling Research project CfP-WP14-ER-01/Swiss Confederation-01
Ben Dudson (YPI) BOUT++ Workshop 2014 (8 of 14)

Verification of BOUT++

BOUT++ has been recently tested using this method2

Time integration schemes

Advection schemes

Boundary conditions
(particular thanks to Jens,
John, and Luke)

Toroidal coordinates, and
shifted metric procedure

3-field (p,U,Ψ) reduced
MHD for ELM simulations

5-field (n,Te , ω, v||e , v||i)
equations for turbulence
simulations

10-3 10-2 10-1 100

Mesh spacing δx

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

E
rr

o
r

n
o
rm

P

ψ

U

2Enabling Research project CfP-WP14-ER-01/Swiss Confederation-01
Ben Dudson (YPI) BOUT++ Workshop 2014 (8 of 14)

Verification of BOUT++

BOUT++ has been recently tested using this method2

Time integration schemes

Advection schemes

Boundary conditions
(particular thanks to Jens,
John, and Luke)

Toroidal coordinates, and
shifted metric procedure

3-field (p,U,Ψ) reduced
MHD for ELM simulations

5-field (n,Te , ω, v||e , v||i)
equations for turbulence
simulations

10-3 10-2 10-1 100

Mesh spacing δx

10-6

10-5

10-4

10-3

10-2

10-1

100

Er
ro

r n
or

m

Ne
Te
Vort
VePsi
Vi

2Enabling Research project CfP-WP14-ER-01/Swiss Confederation-01
Ben Dudson (YPI) BOUT++ Workshop 2014 (8 of 14)

Implementation in BOUT++

MMS testing requires three new features:

Calculating manufactured solutions fM from analytic
expressions
→ Initialisation, and calculation of errors

Calculating exact sources S from analytic solutions
→ Added to time-derivatives

Calculation of boundary condition values from analytic
expressions
→ Modify boundary conditions by adding source

Analytic expressions can become extremely large
→ All of these expressions must be copied from Mathematica or
Python into BOUT++ inputs without modification.

Ben Dudson (YPI) BOUT++ Workshop 2014 (9 of 14)

Implementation in BOUT++

BOUT++ contains a parser which
can evaluate analytic
expressions

Used previously to set initial
conditions

Significantly enhanced,
allowing more complex
expressions

Made consistent with
definitions of boundary
locations, sufficiently exact
for MMS

Parses and evaluates a string:

#include < f i e l d f a c t o r y . hxx>

F ie ldFac to ry ∗ f a c t o r y = F ie ldFac to ry : : get () ;

Field3D f = fac to ry −>create3D (” cos (y−z) ”) ;

Can include input options in expressions:

Field3D f = fac to ry −>create3D (” ne : s o l u t i o n ”)

which could be set in BOUT.inp:

[ne]
s o l u t i o n = x ˆ2 + s in (y)

or on the command line

$ mpirun −np 4 . / mycode ne : s o l u t i o n =cosh (x)

Ben Dudson (YPI) BOUT++ Workshop 2014 (10 of 14)

Implementation in BOUT++: Solutions and sources

This FieldFactory is used by the time integration Solver class to
evaluate analytic expressions

Enabled by setting solver:mms to true

For each evolving variable, Solver looks up a solution and
source option
[n]

s o l u t i o n = 0.9∗ x l + 0.2∗ s in (5 .0∗ x l ˆ2 − 2∗ z l)∗ cos (10∗ t) + 0.9

source = 0.9∗ x − 1 .0∗ (0 .5∗ x − s in (3 .0∗ x ˆ2 − 3∗z)∗ cos (7∗ t)) ∗ s in (p i ∗x)
− 1.0∗(−20.0∗x ˆ2∗ s in (5 .0∗ x ˆ2 − 2∗z) + 2.0∗ cos (5 .0∗ x ˆ2 − 2∗z))
∗cos (10∗ t) + 0 .4∗ (p i ∗ (0 .5∗ x − s in (3 .0∗ x ˆ2 − 3∗z)∗ cos (7∗ t))
∗cos (p i ∗x) + (−6.0∗x∗cos (7∗ t)∗ cos (3 .0∗ x ˆ2 − 3∗z) + 0 .5)∗ s in (p i ∗x))
. . .

Whenever the user’s RHS function F (f , t) is called, the source
term is evaluated at the time t , and added to the
time-derivative given to the integration code (e.g RK4,
CVODE, PETSc, ...)

Ben Dudson (YPI) BOUT++ Workshop 2014 (11 of 14)

Implementation in BOUT++: Boundary conditions

The same mechanisms are used to set boundary conditions, which
now depend on position and time.

Boundary conditions are usually set in the input
[ne]
b n d r y a l l = d i r i c h l e t o 2

These can be given optional input expressions:
[ne]
b n d r y a l l = d i r i c h l e t o 2 (ne : s o l u t i o n)

To apply the boundary condition, this expression will be
evaluated for each point on the boundary, every time F is
calculated

Ben Dudson (YPI) BOUT++ Workshop 2014 (12 of 14)

Implementation in BOUT++

For every evolving variable, the solver will add another output,
appending ”E ” to the name.
This can be collected as usual, and used to calculate an error
The testing procedure can be automated. See Python scripts
in the examples/MMS subdirectories

Some issues to be aware of:

Solutions should be chosen to exercise the relevant physics,
and so that the magnitude of
Solutions should be smooth, obey periodicity constraints, and
physical constraints such as ne > 0
Input expressions use normalised x, y and z coordinates,
which are uniform in grid cell number. Transforming between
coordinates is a common source of error
The FieldFactory code was not written with efficiency in
mind, so this can be a little slow on large sets of equations

Ben Dudson (YPI) BOUT++ Workshop 2014 (13 of 14)

Conclusions

The Method of Manufactured Solutions (MMS) provides a
rigorous way to test that a set of equations is implemented
correctly
BOUT++ has been modified to make testing easier, with little
to no modification to user code
Large parts of BOUT++ have now been tested
Several bugs and inconsistencies found and fixed. Fortunately
none of them serious.
It is highly recommended that MMS tests are used for all
present and future implementations in BOUT++. It will save
time for the deveoper by discovering errors before the code is
used to ”do physics”

Getting everything right can be a long and frustrating
experience
The end result (straight lines) doesn’t make for exciting talks!

Ben Dudson (YPI) BOUT++ Workshop 2014 (14 of 14)

