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Potential fields in reduced MHD

Drift-reduced fluid models usually formulated in terms of a vorticity
@ Fluid velocity assumed to have form v = y;b + drifts
@ Rather than evolving v, solve for v; and a scalar vorticity
w=Db-Vx(minyv)
@ From either momentum or charge conservation V- J = 0:
0 min
a7 (5
withV, =V -bb-V

Vﬂﬁ) =V. (J”b) + V - J4ia + Higher order terms

min , . .
@ Inverting the operator V - (B_IQVM) to obtain the potential ¢ is

a major part of the complexity and computational expense in a
drift-reduced fluid simulation
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2D inversion

In curvilinear coordinates the operator to be inverted is

v. (mn

”’5) laif (J? '(V.9) )

@ The Clebsch coordinate system B = Vi X Va used in
BOUT++ is non-orthogonal, since @ = toroidal angle.

@ This enables FFTs to be used, but g’ (V,¢); # 0 along B
direction.

@ Drift ordering k| < k, is usually used to drop derivatives
along B.

@ This reduces the number of dimensions to 2, reducing the
computational difficulty.
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2D inversion using FFTs

The standard BOUT++ coordinate system (inherited from BOUT)'
uses toroidal angle ¢ as one of its coordinates:

X = y—¥o y=2=0
9

z = (- | v(y,0)do

o

-V
with v (¢, 0) = B V{ is the local field-line pitch.

@ In these coordinates equilibrium quantities and metric
components are constant, so Fourier transforms can be used
@ But: Only if we assume that the coefficient is constant in ¢

19
Jau'(JB2 (V”p))
N———r

Constant in {

Commonly called the Boussinesq approximation

'See coordinates manual for details
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2D inversion using FFTs

In the Laplacian class implementations, the operator is expanded
in a non-conservative form:

1
V(aVip)=w — V2¢+-V,a-Vi¢=uwla
a
which is solved by setting coefficients:

’
DV2x + gViC-Vix=b

Laplacian* phiSolver = Laplacian::create();

phiSolver—>setCoefD(1.0); // This is the default
phiSolver—>setCoefC (alpha);

Field3D phi = phiSolver—>solve (omega / alpha);

Note: If any coefficients depend on z (¢) then they are averaged
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2D inversion using FFTs

The Laplacian operator can be written in terms of ¢ derivatives as:

Vi B2 42
V2 = (RB
. (RE.)" [W * (RB; )4322]

—_

(9 2 B{ a
oy l/(RB ]w‘aay(szﬁ)a

Taking Fourier transforms in z,

-_— > _Ikz

0z

@ For each toroidal mode k;, these equations reduce to a
second order equation in ¢ (or x).

@ These can be solved independently using efficient algorithms
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2D inversion using FFTs: Implementation

The 1D equations in x are discretised using a 3-point stencil
@ Tridiagonal system of equations
Boundary conditions need to be set on inner and outer x
@ Zero value (the default)
@ Zero gradient
@ Decaying Laplacian approximation
@ Cylindrical boundary condition
o ..

See include/invert_laplace.hxx
Set using a system of flags

phiSolver—>setinnerBoundaryFlags (INVERT_.DC_GRAD) ;
phiSolver—>setOuterBoundaryFlags (INVERT_AC_.GRAD) ;

@ Note the distinction between DC (k; = 0) and AC (k; # 0)
components: k; = 0 is a special case due to gauge invariance
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Energy conservation

The Boussinesq approximation can lead to non-conserved energy

@ Solving equations for the shear Alfvén wave: Vorticity w and
electromagnetic potential A, with auxiliary equations for the
electrostatic potential ¢ and parallel current jj = bg - j:

80) . (9A||
=V-(b 1= py-v
m (bojjt) ET by - V¢
w=V- ( 52 Vﬂﬁ) V3 A| = —poji

@ This has a conserved energy

1
E=y f dV[ |Vl¢|2+—|vLAu|
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Energy conservation

Making the approximation

v (Tvig)=v

ming
B2
N——

Axisymmetric, constant

( B2 V“p)

modifies the conserved energy, but the approximation

V(e vse) = v (5279)

introduces an energy source

dE m; V. ¢
%E_ [av v
dt f d [¢32 at ”}

— Would like to remove the Boussinesq approximation
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2D inversion using PETSc

10° <
+ R

@ BOUT++ can use the
PETSc library to solve these
equations

None

@ Contains a number of o

iterative schemes e.g. CG,
GMRES, ... . !

FFT

@ To find a solution efficiently, .
010° 10! 10° 10

a preconditioner is needed KSP iteration number

_ Jacobi

Residual norm

SOR

3 10°

@ See talk at 2013 workshop: bout2013.11nl.gov
@ Examples: examples/blob2d
@ Need to compile and configure with PETSc

./ configure —with—petsc
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bout2013.llnl.gov

Issues with 2D solvers

@ Boundary conditions: A separate boundary condition is
imposed on each x — z plane (¢ — £ in most simulations). This
may over-constrain the problem
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Issues with 2D solvers

@ Boundary conditions: A separate boundary condition is
imposed on each x — z plane (¢ — £ in most simulations). This
may over-constrain the problem

© Difficulty with m = 0 modes: If z is toroidal angle, then the y
(parallel; poloidal) derivatives cannot be neglected for the
n =0, m=1mode.
e Becomes particularly problematic in X-point geometry
e Switching to using planes in ¢ — 6 helps, but loses the ability to
take Fourier transforms and reduce to 1-D problem.
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Numerical methods - Global X-point geometry

@ The standard method
previously used has
problems solving for
global-scale electric fields
(e.g. n=0) in X-point
geometry
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Numerical methods - Global X-point geometry

@ The standard method
previously used has
problems solving for
global-scale electric fields
(e.g. n=0) in X-point
geometry

@ Neglect of “small” quantities
can lead to unphysical
solutions
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Numerical methods - Global X-point geometry

@ The standard method
previously used has
problems solving for
global-scale electric fields
(e.g. n=0) in X-point
geometry

@ Neglect of “small” quantities
can lead to unphysical
solutions

@ Efficient methods
implemented to solve full 3D
problem

Height [m]

@ Should enable more realistic
simulation of global X-point 7 e
geometry 1.0 1.2 ojor radius [m] 1.4 1.6
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Discussion

A big problem for all 3D simulations is Fast timescales: Parallel
electron dynamics tends to make timesteps very small (< ion
cyclotron time).

@ How to include parallel Ohm’s law, but remove these
timescales?

@ Preconditioning complicated by mixing of k, and k.
— Multigrid methods?

@ P.Tamain: Combining Ohm’s law and Vorticity equation into
3D equation for ¢

@ Is there a better way?
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