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Potential fields in reduced MHD

Drift-reduced fluid models usually formulated in terms of a vorticity

Fluid velocity assumed to have form v = v||b + drifts

Rather than evolving v, solve for v|| and a scalar vorticity
ω = b · ∇ × (miniv)

From either momentum or charge conservation ∇ · J = 0:

∂

∂t
∇ ·

(min
B2 ∇⊥φ

)
= ∇ · (J||b) + ∇ · Jdia + Higher order terms

with ∇⊥ = ∇ − bb · ∇

Inverting the operator ∇ ·
(min

B2 ∇⊥φ
)

to obtain the potential φ is

a major part of the complexity and computational expense in a
drift-reduced fluid simulation
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2D inversion

In curvilinear coordinates the operator to be inverted is

∇ ·

(min
B2 ∇⊥φ

)
=

1
J
∂

∂ui

(
J

min
B2 gij (∇⊥φ)j

)
The Clebsch coordinate system B = ∇ψ × ∇α used in
BOUT++ is non-orthogonal, since α = toroidal angle.

This enables FFTs to be used, but gij (∇⊥φ)j , 0 along B
direction.

Drift ordering k|| � k⊥ is usually used to drop derivatives
along B.

This reduces the number of dimensions to 2, reducing the
computational difficulty.
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2D inversion using FFTs

The standard BOUT++ coordinate system (inherited from BOUT)1

uses toroidal angle ζ as one of its coordinates:

x = ψ − ψ0 y = θ

z = ζ −

∫ θ

θ0

ν (ψ, θ) dθ

with ν (ψ, θ) =
B · ∇ζ
B · ∇θ

is the local field-line pitch.

In these coordinates equilibrium quantities and metric
components are constant, so Fourier transforms can be used
But: Only if we assume that the coefficient is constant in ζ

1
J
∂

∂ui

(
J

min
B2 gij︸   ︷︷   ︸

Constant in ζ

(∇⊥φ)j

)

Commonly called the Boussinesq approximation
1See coordinates manual for details
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2D inversion using FFTs

In the Laplacian class implementations, the operator is expanded
in a non-conservative form:

∇ · (α∇⊥φ) = ω → ∇2
⊥φ+

1
α
∇⊥α · ∇⊥φ = ω/α

which is solved by setting coefficients:

D∇2
⊥x +

1
C
∇⊥C · ∇⊥x = b

Laplac ian ∗ ph iSo lver = Laplac ian : : c reate ( ) ;

ph iSolver−>setCoefD ( 1 . 0 ) ; / / This i s the d e f a u l t
ph iSolver−>setCoefC ( alpha ) ;

Field3D phi = phiSolver−>solve (omega / alpha ) ;

Note: If any coefficients depend on z (ζ) then they are averaged
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2D inversion using FFTs

The Laplacian operator can be written in terms of ψ derivatives as:

∇2
⊥ = (RBθ)

2
 ∂2

∂ψ2 +
B2

(RBθ)
4

∂2

∂z2


+

1
J
∂

∂ψ

[
J (RBθ)

2
] ∂

∂ψ
−

1
J
∂

∂y

 Bζ

B2
θ R

 ∂

∂z

Taking Fourier transforms in z,

∂

∂z
→ −ikz

For each toroidal mode kz , these equations reduce to a
second order equation in ψ (or x).

These can be solved independently using efficient algorithms
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2D inversion using FFTs: Implementation

The 1D equations in x are discretised using a 3-point stencil

Tridiagonal system of equations

Boundary conditions need to be set on inner and outer x

Zero value (the default)
Zero gradient
Decaying Laplacian approximation
Cylindrical boundary condition
...

See include/invert laplace.hxx
Set using a system of flags

phiSolver−>set InnerBoundaryFlags ( INVERT DC GRAD ) ;
ph iSolver−>setOuterBoundaryFlags ( INVERT AC GRAD ) ;

Note the distinction between DC (kz = 0) and AC (kz , 0)
components: kz = 0 is a special case due to gauge invariance
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Energy conservation

The Boussinesq approximation can lead to non-conserved energy

Solving equations for the shear Alfvén wave: Vorticity ω and
electromagnetic potential A||, with auxiliary equations for the
electrostatic potential φ and parallel current j|| = b0 · j:

∂ω

∂t
= ∇ · (b0j||)

∂A||
∂t

= −b0 · ∇φ

ω = ∇ ·
(min

B2 ∇⊥φ
)

∇2
⊥A|| = −µ0j||

This has a conserved energy

E =
1
2

∫
dV

[
min
B2 |∇⊥φ|

2 +
1
µ0

∣∣∣∇⊥A||
∣∣∣2]

Ben Dudson (YPI) BOUT++ Workshop 2014 (9 of 14)



Energy conservation

Making the approximation

∇ ·

(min
B2 ∇⊥φ

)
' ∇ ·

(
min0

B2︸︷︷︸
Axisymmetric, constant

∇⊥φ

)

modifies the conserved energy, but the approximation

∇ ·

(min
B2 ∇⊥φ

)
' n∇ ·

( mi

B2∇⊥φ
)

introduces an energy source

dE
dt

=

∫
dV

[
φ

mi

B2

∂∇⊥φ

∂t
· ∇n

]
→Would like to remove the Boussinesq approximation
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2D inversion using PETSc

BOUT++ can use the
PETSc library to solve these
equations

Contains a number of
iterative schemes e.g. CG,
GMRES, ...

To find a solution efficiently,
a preconditioner is needed 100 101 102 103 104

KSP iteration number

10-6

10-5

10-4

10-3

10-2

10-1

100

Re
si

du
al

 n
or

m

None

Jacobi

SOR

FFT

See talk at 2013 workshop: bout2013.llnl.gov

Examples: examples/blob2d

Need to compile and configure with PETSc

. / con f igu re −−with−petsc
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Issues with 2D solvers

1 Boundary conditions: A separate boundary condition is
imposed on each x − z plane (ψ − ζ in most simulations). This
may over-constrain the problem

2 Difficulty with m = 0 modes: If z is toroidal angle, then the y
(parallel; poloidal) derivatives cannot be neglected for the
n = 0, m = 1 mode.

Becomes particularly problematic in X-point geometry
Switching to using planes in ψ − θ helps, but loses the ability to
take Fourier transforms and reduce to 1-D problem.
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Numerical methods - Global X-point geometry

The standard method
previously used has
problems solving for
global-scale electric fields
(e.g. n = 0) in X-point
geometry

Neglect of “small” quantities
can lead to unphysical
solutions

Efficient methods
implemented to solve full 3D
problem

Should enable more realistic
simulation of global X-point
geometry
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Discussion

A big problem for all 3D simulations is Fast timescales: Parallel
electron dynamics tends to make timesteps very small (� ion
cyclotron time).

How to include parallel Ohm’s law, but remove these
timescales?

Preconditioning complicated by mixing of k⊥ and k||.
→ Multigrid methods?

P.Tamain: Combining Ohm’s law and Vorticity equation into
3D equation for φ

Is there a better way?
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